DEFINITION C.10 A point \mathbf{x}^* satisfying $\mathbf{g}(\mathbf{x}^*) \leq \mathbf{d}$ is said to be a regular point of the constraints $\mathbf{g}(\mathbf{x}) \leq \mathbf{d}$ if the vectors in the set $\{\nabla \mathbf{g}_j(\mathbf{x}^*) : g_j(\mathbf{x}^*) = d_j\}$ are linearly independent,

This leads to the following first-order necessary conditions (called the *Kuhn-Tucker conditions*):

PROPOSITION C.10 Suppose $f \in C^1$ and \mathbf{x}^* is a local maximum of the function f over the constraint set $X = \{\mathbf{x} : \mathbf{g}(\mathbf{x}) \leq \mathbf{d}\}$. Then if \mathbf{x}^* is a regular point, there exist a vector $\boldsymbol{\pi} \in \Re^m$ with $\boldsymbol{\pi} \geq 0$ such that

$$\nabla \mathbf{f}(\mathbf{x}^*) - \boldsymbol{\pi}^{\mathsf{T}} \nabla \mathbf{g}(\mathbf{x}^*) = 0$$
$$\boldsymbol{\pi}^{\mathsf{T}} (\mathbf{d} - \mathbf{g}(\mathbf{x}^*)) = 0.$$

In the convex case, both Propositions C.9 and C.10 provide sufficient conditions for optimality. That is, if f is concave, the set X defined by the equality or inequality constraints is convex, and we find a feasible solution \mathbf{x}^* and an associated multiplier π satisfy the conditions of Propositions C.9 (or Proposition C.10 in the inequality case), then \mathbf{x}^* is a global maximum.

Sensitivity Analysis

The Lagrange multipliers have an interpretation as giving the rate of change of the objective function as a function of the right-hand side vectors. Indeed, let

$$v(\mathbf{b}) \equiv \max f(\mathbf{x})$$

s.t. $\mathbf{h}(\mathbf{x}) = \mathbf{b}$.

Then under some relatively mild regularity conditions (see Bertsekas [59]), one can show

$$\nabla_b \mathbf{v}(\mathbf{b}) = \pi$$

where π is the Lagrange multiplier associated with an equality-constrained optimal solution \mathbf{x}^* . Similarly, if

$$v(\mathbf{d}) \equiv \max f(\mathbf{x})$$

s.t. $\mathbf{g}(\mathbf{x}) < \mathbf{d}$,

then

$$\nabla_d \mathbf{v}(\mathbf{d}) = \pi$$

where $\pi \geq 0$ is the Lagrange multiplier associated with the corresponding optimal solution \mathbf{x}^* . The multipliers therefore measure the effect that small changes in the right-hand-sides have on the optimal objective function value.

Parametric Monotonicity

Paramteric monotonicity addresses the question of how optimal solutions vary as a function of the parameters of an optimization problem. These parametric monotonicity results are used, for example, in the analysis of the base-stock, list price policies of